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ABSTRACT
The capability of recognizing pedestrian attributes, such as
gender and clothing style, at far distance, is of practical
interest in far-view surveillance scenarios where face and
body close-shots are hardly available. We make two con-
tributions in this paper. First, we release a new pedes-
trian attribute dataset, which is by far the largest and most
diverse of its kind. We show that the large-scale dataset
facilitates the learning of robust attribute detectors with
good generalization performance. Second, we present the
benchmark performance by SVM-based method and propose
an alternative approach that exploits context of neighboring
pedestrian images for improved attribute inference.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Image databases

Keywords
Large-scale database; attribute classification.

1. INTRODUCTION
Visual recognition of pedestrian attributes, such as gen-

der, age, clothing style, is an emerging research topic in
computer vision research, due to its high application poten-
tial in areas such as video-based business intelligence [16]
and visual surveillance [5]. In many real-world surveillance
scenarios, clear close-shots of face and body regions are not
available. Thus, attribute recognition has to be performed
at far distance using full body appearance (which can be
partially occluded) in the absence of critical face/close-shot
body visual information.

There are two fundamental challenges in attribute infer-
ence at far distance: 1) Appearance diversity - owing to
diverse appearances of pedestrian clothing and uncontrol-
lable multi-factor variations such as illumination and camera
viewing angle, there exist large intra-class variations among
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Figure 1: The new PETA dataset contains far
more images and attribute annotations than existing
datasets. Positive and negative sample images are
indicated by blue and red boxes, respectively.

different images for the same attribute. Learning to de-
tect such attributes requires a rich set of training samples.
Relying on a single source and small-scale training data
would easily lead to an unrealistic model that generalizes
poorly to unknown domains due to the inherent data bias.
2) Appearance ambiguity - far-view attribute recognition is
an exceptionally difficult task due to inherent visual am-
biguity and poor quality of visual features obtained from
far view field (Fig. 1). In particular, an individual image
may only occupy a few tens of imagery pixels whilst only
a tiny fraction of them are truly distinctive for attribute
classification. Often, parts of the body are occluded, either
by obstacles or other pedestrians, which further increases the
difficulty of extracting relevant features for inference. For
instance, images with the ‘carrying backpack’ attribute may
not necessarily have the full bag visible due to pedestrian
posture (Fig. 1).

Existing datasets do not reflect the diversity nature in
real-world environment. In view of this shortcoming, we in-
troduce and release a new large-scale PEdesTrian Attribute
(PETA) dataset1. The dataset is by far the largest of its
kind, covering more than 60 attributes on 19000 images.
As can be seen from Fig. 1, in comparison with existing
datasets, PETA is more diverse and challenging in terms of
imagery variations and complexity. More details are pre-
sented in Sec. 2. Apart from releasing the new dataset, we
also propose an alternative approach for attribute recogni-

1http://mmlab.ie.cuhk.edu.hk/projects/PETA.html
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tion with emphasis to mitigating the visual ambiguity of
appearance features. Specifically, instead of treating an im-
age independently, we consider inference with the help from
neighboring pedestrian images whose appearances look alike.
We hypothesize that neighboring samples share natural in-
variance in their feature space, which could be treated as a
form of regularization or context. As such, attribute infer-
ence of an image can be locally constrained by its neighbors
to obtain a more reliable prediction. To this end, we view
multiple pedestrian images as forming a Markov Random
Field (MRF) graph. The underlying graph topology is auto-
matically inferred, with node associations weighted by pair-
wise image similarity. The similarity can be estimated as the
conventional Euclidean distance or more elaborated decision
forest-based similarity with feature selection [20, 21]. By
carrying out inference on the graph, we jointly reason and
estimate the attribute probability of all images in the graph.

It is worth noting that MRF inference for smoothing [9]
is commonly applied in image segmentation [15], but this
paper is the first work that explores this approach for pedes-
trian attribute inference. We summarize our contributions
as follows: 1) we introduce the largest pedestrian attribute
dataset to date to facilitate future research on attribute
classification at far distance; 2) we present the benchmark
performance by SVM-based method [8] and propose an alter-
native approach that exploits context of neighboring images
for improved attribute inference. Thanks to the neighboring
context, our model is capable of accurately detecting subtle
attributes, which may otherwise be mis-detected from single
image.

2. PEDESTRIAN ATTRIBUTE DATASET
Statistics: We carefully chose and organized 10 publicly
available small-scale datasets to construct the new PEdes-
Trian Attribute (PETA) dataset2,3. The name, size, and
main characteristics of constituent datasets, are summarized
in the table in Fig. 2. The PETA dataset thus consists of
19000 images, with resolution ranging from 17 × 39 to 169
× 365 pixels. Organizing these datasets are not straightfor-
ward. First, we carefully removed erroneous images or du-
plicated copies from each datasets. In addition, each image
is newly labeled with 61 binary and 4 multi-class attributes.
The binary attributes cover an exhaustive set of character-
istics of interest, including demographics (e.g. gender and
age range), appearance (e.g. hair style), upper and lower
body clothing style (e.g. casual or formal), and accessories.
The four multi-class attributes encompass 11 basic color
namings [17], respectively, for footwear, hair, upper-body
clothing, and lower-body clothing. The distribution of a
binary attribute is considered balanced if the ratio of larger
to smaller class is no more than 20:1. As such, out of the
61 binary attributes, 31 are balanced. Fig. 2(b) depicts the
distribution of a few attributes with sample images4.

Uniqueness: Compared to existing pedestrian attribute
dataset, this new attribute dataset has three notable unique-

2Images in PETA dataset are all exclusive from those in
APiS [19].
3All images in PETA are freely available for aca-
demic use except i-LIDS, which requires application
to United Kingdom Home Office, https://www.gov.uk/
imagery-library-for-intelligent-detection-systems.
4Sample images of the datasets and the full distributions of
all attributes can found in the supplementary material.

ness: (1) Larger size: the size of the PETA dataset is over
5× and 15× larger than the APiS and VIPeR datasets,
respectively. (2) High diversity : we deliberately selected
smaller-scale datasets collected under different conditions
from diverse scenes to enrich the composition of the new
attribute dataset. As can be seen from Fig. 1 and summa-
rized in the table in Fig. 2(a), despite that the constituents
of PETA are all captured from far view field, they exhibit
large differences in terms of lighting condition, camera view-
ing angles, image resolutions, background complexity, and
indoor/outdoor environments. (3) Rich annotations: The
PETA dataset contains far richer annotations in compar-
ison with existing datasets, such as VIPeR [6], with only
15 binary attributes, and APiS [19], with 11 binary and
2 multi-class attributes, It is worth pointing out that the
61 annotated attributes in PETA dataset include the 15
attributes that are suggested by the UK Home Office and
UK police to be the most valuable in tracking and criminal
identification [14].

Usage: Visual understanding through semantic attributes
is an active research topic in the multimedia research com-
munity, e.g. [12], for the applications such as image retrieval
and recommendation systems [3, 7, 11]. This dataset can
serve as an alternative benchmark. More specifically, the
new dataset can be used in visual surveillance research on
pedestrian tracking, detection, re-identification, and activity
analysis. Furthermore, the visual attributes can potentially
be integrated with multi-sources of information, e.g. audio,
textual annotation, sensor signals, for multimedia surveil-
lance [20, 4]. In the next section, we present two bench-
marking methods for attribute classification, a fundamental
task in visual understanding.

3. BASELINE METHODS
Baseline 1. SVM with intersection kernel (ikSVM) [13]5

reduces both the time and space complexities from O(mn)
of the traditional linear kernel SVM to O(n). Here, m and n
are the number of the support vectors and the dimension of
feature vectors. Previous study [8] has applied this method
successfully for pedestrian attribute classification. Cross
validation for slack parameter C is performed as in [8].

Baseline 2. To improve attribute inference, we exploit
the context of neighboring images by Markov Random Field
(MRF), which is an undirect graph, where each node repre-
sents a random variable and each edge represents the rela-
tion between two connected nodes. The energy function of
MRF over a graph G can be defined as follows

EMRF (G) =
∑
u∈G

Cu(lu) +
∑
u∈G

∑
v∈N(u)

Suv(lu, lv), (1)

where u, v ∈ G are two random variables in the graph and lu
denotes the state of u. Cu and Suv signify the unary cost and
pairwise cost functions, respectively. More precisely, they
indicate the cost of assigning state lu to variable u as well as
the cost of assigning states to neighboring nodes u, v, which
is determined based on the graph structure (e.g., assigning
different states to nodes that are similar is penalized). N(u)
is a set of variables that are the neighbors of u.

In this work, each random variable corresponds to an
image and the relation between two variables corresponds

5http://www.cs.berkeley.edu/~smaji/projects/
fiksvm/
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Figure 2: (a) The composition of PETA dataset. (b) Examples of attributes with their distribution (blue:
positive, orange: negative).

to the similarity between images. The states of variable are
the values of the image attribute, which is lu ∈ {0, 1}. The
unary function is modeled by

Cu(lu) = − logP (lu|u), (2)

where P (lu|u) is the probability of predicting the attribute
value of image u as lu. This probability is learned by ikSVM.

Now we consider the definition of the pairwise function.
To define affinity between nodes, a simple way widely adopted
by existing methods, such as [18], is the Gaussian kernel,

exp{− ‖u−v‖
2

σ2 }, in which u, v indicate the feature vectors
of two images and σ is a coefficient that needs to be tuned.
The graph built on this kernel function can model the global
smoothness among images. However, when large variations
are presented, one may consider modeling the local smooth-
ness and discovering the intrinsic manifold of the data. Thus,
an alternative is to employ the random forest (RF) [2] to
learn the pairwise function [20, 21]. The RF we adopted is
unsupervised, i.e. it takes unlabeled test samples as input.
The output is pairwise sample similarity derived from the
data partitioning discovered at the leaf nodes of RF. The
unsupervised RF can be learned using the pseudo two-class
method as in [20, 21, 10]. Specifically, we treat the original
unlabeled test samples as first class. The pseudo second
class is created by sampling at random from the univari-
ate distributions of the unlabeled test samples. With this
strategy, the unsupervised RF learning problem becomes a
canonical classification problem that can be solved by con-
ventional classification forest training method. Specifically,
the information gain of unsupervised RF is identical to that
of conventional supervised RF, defined as

∆I = Ip −
nl
np
Il −

nr
np
Ir, (3)

where p, l, and r refer to a splitting node and its left and
right child. The variable n denotes the number of samples
at a node, np = nr + nl. I is the Gini impurity measure at
each node [2].

The pairwise function is expressed as

Suv(lu, lv)) =

{
1
T

∑T
t=1 exp{−distt(u, v)} if lu 6= lv,

0 otherwise.
(4)

Here, distt(u, v) = 0 if u, v fall into the same leaf node and
distt(u, v) = +∞ otherwise, where t is the index of tree.
Since the graph is dense, the inference of MRF is difficult.
Thus, we build a k-NN sparse graph by limiting the number
of neighbors for each node. We set k = 5 in our experiment.
Eq.(1) can be efficiently solved by the min-cut/max-flow
algorithm introduced in [1].

4. EXPERIMENT
We present benchmark results on PETA by evaluating the

performance of intersection kernel SVM (ikSVM) [13], MRF
with Gaussian kernel (MRFg), and MRF with random forest
(MRFr), as discussed in Sec.3.

We randomly partitioned the dataset images into 9,500
for training, 1,900 for verification and 7,600 for testing. We
selected 35 attributes for our study, consisting of the 15
most important attributes in video surveillance proposed
by human experts [8], [14] and 20 difficult yet interesting
attributes chosen by us, covering all body parts of the pedes-
trian and different prevalence of the attributes. For example,
‘sunglasses’ and ‘v-neck’ have a limited number of positive
examples. For the attributes with unbalanced positives and
negatives samples, we trained ikSVM for each attribute by
augmenting the positive training examples to the same size
as negative examples with small variations in scale and ori-
entation. This is to avoid bias due to imbalanced data.
For MRFg and MRFr, we built the graphs using two dif-
ferent schemes. The first scheme, symbolized by MRFg1

and MRFr1, is to construct the graphs with only the testing
images. The second one, symbolized by MRFg2 and MRFr2,
is to include both training and testing samples in the graphs.

Features. Low-level color and texture features have been
proven robust in describing pedestrian images [8], including
8 color channels such as RGB, HSV, and YCbCr, and 21
texture channels obtained by the Gabor and Schmid filters
on the luminance channel. The setting of the parameters of
the Gabor and Schmid filters are given in [8]. We horizon-
tally partitioned the image into six strips and then extracted
the above feature channels, each of which is described by a
bin-size of 16. Finally, a 2784-dimensional feature vector is
obtained for each image.

As shown in Table 1, we report attribute detection ac-
curacy as [8] and have the following observations. First,
the MRF-based methods outperform ikSVM on most of the
attributes. For instance, MRFr2 achieves an average of 3.4%
improvement over ikSVM for the ‘age’ attributes shown on
the top. This is significant in a dataset with large appear-
ance diversity and ambiguity and it demonstrates that graph
regularization can improve attribute inference. Second, the
MRF graphs built with the second scheme is superior com-
pared to the first scheme. This is reasonable because using
both the training and testing data can better cover the
image space. Third, for many important attributes, such as
‘hair’ and ‘gender’, random forest works much better than
Gaussian kernel. It is worth pointing out that all meth-
ods perform poorly on attributes with imbalanced positive-
negative distribution, such as ‘logo’, ‘sandals’, ‘sunglasses’,
and ‘v-neck’.
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Figure 3: Examples of attribute classification.

Fig. 3 shows some attribute classification results using
forest MRF. By exploiting the hidden context information,
we obtain good accuracy on gender and hair attributes.
False negative samples typically result from occlusion (e.g.
backpack), color ambiguity (long hair) and background noise
(male).

5. CONCLUSIONS
This paper presents a new large-scale dataset (PETA)

sized at 19000 images with 61 annotated attributes. To cope
with such large and diverse data in the context of attribute
classification, we explored and proposed a novel approach
by exploiting the neighborhood information among image
samples. We showed that accurate attribute detection can
be achieved with the automatically inferred neighborhood
graph topology. Future work will involve the evaluation
of other popular algorithms in attribute classification using
our dataset. We hope that this dataset could serve as a
new benchmark for the more realistic training and testing
of algorithms.
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